CS2955-Prob&Comp-Notes

| Views: | Total Words: 10k | Reading Time: 9 mins.

简单整理一下 CS2955 这门四周小学期课的笔记,不是很细致。

Intro

Why Randomness?

  • Simplicity
  • Efficiency
  • Better in adversarial situation: 由于随机性很难造数据卡掉

Toy Example

array $A: A[i]=0$ for $\frac{n}{3}$ indices $i$. Output some $i$ s.t. $A[i]=0$.

  • Deterministic: check $\frac{2n}{3}-1$ positions. Runtime $\Omega(n)$.

  • Randomized: choose a uniformly random $i$. $Pr\{A[i]=0\} = \frac{1}{3}$. Repeat $10$ times.

    • Failure Prob $(\frac{1}{3})^{10}$

    Runtime $O(1)$.

Monte-Carlo & Las Vegas

  • Monte-Carlo: finite time, but the output could be WRONG.
  • Las Vegas: output is always CORRECT. (Runtime could be infinite, but the $\mathbb{E}(\text{runtime})$ must be finite).

可以被 Monte-Carlo 解决的复杂性类: BPP (Bounded error Probabilistic Polynomial time).

可以被 Las Vegas 解决的复杂性类: ZPP (Zero-error Probabilistic Polynomial time).

Pr(T > T_0) \le \frac{1}{3}

Pr\{X \ge a\} \le \frac{\mathbb{E}X}{a}

Pr\{|X-\mathbb{E}X| \ge a\} \le \frac{\text{Var}(X)}{a^2}

Pr\{|X-\mathbb{E}X|^l \ge a^l\} \le \frac{\mathbb{E}[|X-\mathbb{E}X|^l]}{a^l}

f(x) = \sum_{i=0}^{n-1} a_i x^i

g(x) = \sum_{i=0}^{n-1} b_i x^i

f(r) \equiv g(r) \mod p

Pr\{p \mid f(r)-g(r)\} = \frac{n \ln n}{\frac{n^2}{\ln n}} = O(\frac{\ln^2 n}{n})
$$
  • Facts used in Analysis:

    • (Prime Number Thm) 设 $\pi(x)$ 为不超过 $x$ 的素数个数,

    • $N$ has $\le \ln N$ prime factors.

      考虑前 $m$ 个质数连乘, 数量级为

      $m \sim \frac{\ln N}{\ln m} \le \ln N$.

    • 上面的部分简单推导

      设 $\theta(x) := \sum_{k=1}^{\pi(x)} \ln p_k$ (Chebyshev Function), 素数定理等价于

      又有

      那么 $\theta(p_m) \sim p_m$, $\ln (#m) \sim p_m \sim m \ln m$

  • Communication Complexity

    • $r$ : $O(\log n)$
    • $p$: $O(\log n)$
    • $f(r)\ \text{mod}\ p$: $O(\log n)$

Repeat $O(\log (\frac{1}{\delta}))$ times to achieve suc prob $\ge 1-\delta$.

Multiple Variables

Input: $f, g \in \mathbb{F}[x_1, x_2, \dots, x_n]$ of total degree $d$.

Output: $f$ and $g$ are identical?

这个问题等价于输入 $f \in \mathbb{F}[x_1, x_2, \dots, x_n]$, 输出 $f$ 是否等于 $0$.

输入 $f$ 方式:Blackbox Model: Given $x_1, \dots, x_n$, return $f(x_1, \dots, x_n)$.

Schwartz-Zippel Lemma

Let $P \in \mathbb{F}[x_1, x_2, \dots, x_n]$, $P \neq 0$, total degree $d$ over field $\mathbb{F}$. Let $S$ be a finite subset of $\mathbb{F}$ and let $r_1, r_2, \dots, r_n$ be selected at random independently and uniformly from $S$. Then

Proof

By induction.

Consider the largest $i$.

Therefore

Q.E.D.

Application: Bipartite Matching

check whether G has a perfect matching (algebra method)

$A: n \times n$ matrix:

Claim: $\text{det} A = 0$ iff G has no perfect matching.

Proof:

Alg:

Finding a Perfect Matching

Trivial Alg

爆搜。每次找一个配对,然后把这条边以及这两个点都删了,查找删掉的图是否有完美匹配。

Isolation Lemma

Let $S$ be a family of subsets on a ground set $U$ with $|U|=n$. For each $x \in U$, assign a weight

$w(x)$ from $\{1, 2, \dots, 100n\}$ uniformly.

Then there exists a unique minimum weight subset in $S$ w.p. $\ge 0.99$.

Counterintuitive:

一共有 $2^n$ 个 subsets, 权值 $\le 100n^2$ ,那么每个权值感觉上对应了 $\frac{2^n}{100n^2}$ 个子集,为什么最小权只对应一个子集?

Proof (due to Joel Spence)

For an element $u$, let $F_u$ be the subsets in $S$ that contains $u$, $G_u$ be the subsets in $S$ that doesn’t contain $u$.

Consider

Key Ob: $\alpha(u)$ is determined by weights of element other than $u$. Because $\alpha(u)$ is a fixed integer in $[0, 100n]$, therefore

Then (take a union bound)

If there are distinct min weight subsets $A$, $B$ , $\exists v \in A\setminus B$.

Then

Q.E.D.

Parallel Alg

给每条边 $(i, j) \in E$ 随机赋一个权重 $2^{w_{ij}}$, 那么最小完美匹配的权重 $W$ 即为整除行列式的最大的 $2^W$.

算法:先计算出 $W$. 我们的目标是找一组完美匹配的边。怎样判断一条边 $(i, j)$ 是否是完美匹配呢?答案是只要

是 odd (奇)的即可。$A’$ 是去掉这条边(以及两端点)后的图的 Tutte 矩阵。(回忆行列式写开来,被除剩奇数说明有一项是 $2^W/2^W=1$,即最小权刚好是这个)

Toss Coin

Question

Toss a fair coin $n$ times independently.

Find the smallest $T$, s.t. $Pr\{\text

Author: SiriusNEO

Published on: Metric Space

All posts on this blog are licensed under the CC BY-NC-SA 4.0 license unless otherwise noted.